-5/2u+5/2=-4/5u-2

Simple and best practice solution for -5/2u+5/2=-4/5u-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/2u+5/2=-4/5u-2 equation:



-5/2u+5/2=-4/5u-2
We move all terms to the left:
-5/2u+5/2-(-4/5u-2)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 5u-2)!=0
u∈R
We get rid of parentheses
-5/2u+4/5u+2+5/2=0
We calculate fractions
(-25u)/40u^2+32u/40u^2+25u/40u^2+2=0
We multiply all the terms by the denominator
(-25u)+32u+25u+2*40u^2=0
We add all the numbers together, and all the variables
57u+(-25u)+2*40u^2=0
Wy multiply elements
80u^2+57u+(-25u)=0
We get rid of parentheses
80u^2+57u-25u=0
We add all the numbers together, and all the variables
80u^2+32u=0
a = 80; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·80·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*80}=\frac{-64}{160} =-2/5 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*80}=\frac{0}{160} =0 $

See similar equations:

| 2x+6=7x-114 | | (6/5y)-(4/3)=-1/2 | | 6/5y-4/3=-1/2 | | 3(1x+2)=5(2x+1) | | 1+2x/5+3-x/2=19/10 | | 8(x+3)-7=2x+6(3+x) | | -7(-4x+5)-8x=5(x-7)-9 | | x3−10x2+29x=0 | | 4(v+6)-6v=26 | | 4^x-(6)(2^x)-16=0 | | 4^x-(6*2^x)-16=0 | | 21=-16+n | | 10x+12=5x-22 | | p(-2)=-8(-2-2)^2+6 | | 4^x-6*2^x-16=0 | | (X^2+y^2)(y^2+Z^2)=50 | | .t-(-10)=9 | | -15.9=u/5-3.4 | | 3x=-3x+30. | | 3x(6x-1)x=180 | | (81x^2-64)(x^2+9)=0 | | 5-6=-3k | | 3x-7/4=-2 | | 3(x+2)+5=-5-x | | 32−2x^2=0 | | 5z-12z-10=18-7 | | 6^(x-4)=32^(3x) | | 3x+(5x-3)=x | | 2x/3+x-2=8 | | |x|+6=1 | | -2|x+7|+21=13 | | -25y+10=15y |

Equations solver categories