If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5/2u+5=-3/5u-5-2
We move all terms to the left:
-5/2u+5-(-3/5u-5-2)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 5u-5-2)!=0We add all the numbers together, and all the variables
We move all terms containing u to the left, all other terms to the right
5u-2)!=5
u∈R
-5/2u-(-3/5u-7)+5=0
We get rid of parentheses
-5/2u+3/5u+7+5=0
We calculate fractions
(-25u)/10u^2+6u/10u^2+7+5=0
We add all the numbers together, and all the variables
(-25u)/10u^2+6u/10u^2+12=0
We multiply all the terms by the denominator
(-25u)+6u+12*10u^2=0
We add all the numbers together, and all the variables
6u+(-25u)+12*10u^2=0
Wy multiply elements
120u^2+6u+(-25u)=0
We get rid of parentheses
120u^2+6u-25u=0
We add all the numbers together, and all the variables
120u^2-19u=0
a = 120; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·120·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*120}=\frac{0}{240} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*120}=\frac{38}{240} =19/120 $
| 11+-7=x | | 500=35x=55x | | 4x-12=9x-7 | | -6/7v=-24 | | B+15+b+4b=99 | | -17=1+3m+6m | | -4(4x-4)+2x-4=-30 | | 3d/8=5/12 | | 9(3n+3)=9(5n+4)+5 | | 7x+4(3-2)=18 | | 5e+36=e | | 4e-7=2e+11 | | 3x-9=12x=1 | | 4w(w−3)=24 | | 3v-5v=8 | | -6x-5=43 | | 3(-2x-2)+2x+5=23 | | 4.5k=2(0.45k-3) | | -2k-3k=-12-2k | | 6x+2x+12=27 | | 3a+2-4+a= | | 61=-v+181 | | 9/21(2x-1)+2/7(x+1)=5 | | 8.1x-4.5x=5.4 | | 23.16+d=53.16 | | 3x+2+55=13 | | 3b-2b=-5 | | 13=4x+1114=3x+1 | | 2x²+8x-7=-2 | | 3(m+4)+5m=4(2m+3) | | 0.6=x+4 | | 8a-6=7a+a-6 |