-5/2x-3=4/5x-5

Simple and best practice solution for -5/2x-3=4/5x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/2x-3=4/5x-5 equation:



-5/2x-3=4/5x-5
We move all terms to the left:
-5/2x-3-(4/5x-5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x-5)!=0
x∈R
We get rid of parentheses
-5/2x-4/5x+5-3=0
We calculate fractions
(-25x)/10x^2+(-8x)/10x^2+5-3=0
We add all the numbers together, and all the variables
(-25x)/10x^2+(-8x)/10x^2+2=0
We multiply all the terms by the denominator
(-25x)+(-8x)+2*10x^2=0
Wy multiply elements
20x^2+(-25x)+(-8x)=0
We get rid of parentheses
20x^2-25x-8x=0
We add all the numbers together, and all the variables
20x^2-33x=0
a = 20; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·20·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*20}=\frac{0}{40} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*20}=\frac{66}{40} =1+13/20 $

See similar equations:

| 3k^2-7=0 | | 0.91=3.1/x | | 12/x=6/50 | | 29.20s+4=13s–10 | | -8+24=8x-24 | | 8+5p+7p=-4 | | -3p=-11+2 | | -14-8x=6x | | X+9=10p | | x+0.5=-1 | | 240x-1560=76x-38 | | 10.00-15.00=c | | 3(7p-2)+8p=8(-6+p) | | 1⁄2(29-r)=7.75 | | 10.00+15.00=c | | x−21=6x | | 10-15=c | | 10+15=c | | 26=-4-y | | (4x-18)°+(3x-8)°=180 | | 5(b+4)=100 | | 240x-1560=136x-38 | | x/11=4/2 | | 26n=34 | | 2p=28-46 | | -1.2h-15=93 | | 99=-22+a | | 2a+4=8a+2 | | 5/3=x18 | | m=–6+4m | | -50=10x+20 | | 10r-9r+r=10 |

Equations solver categories