If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5/6k+8/7=7-8/9k
We move all terms to the left:
-5/6k+8/7-(7-8/9k)=0
Domain of the equation: 6k!=0
k!=0/6
k!=0
k∈R
Domain of the equation: 9k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-5/6k-(-8/9k+7)+8/7=0
We get rid of parentheses
-5/6k+8/9k-7+8/7=0
We calculate fractions
3888k^2/2646k^2+(-2205k)/2646k^2+2352k/2646k^2-7=0
We multiply all the terms by the denominator
3888k^2+(-2205k)+2352k-7*2646k^2=0
We add all the numbers together, and all the variables
3888k^2+2352k+(-2205k)-7*2646k^2=0
Wy multiply elements
3888k^2-18522k^2+2352k+(-2205k)=0
We get rid of parentheses
3888k^2-18522k^2+2352k-2205k=0
We add all the numbers together, and all the variables
-14634k^2+147k=0
a = -14634; b = 147; c = 0;
Δ = b2-4ac
Δ = 1472-4·(-14634)·0
Δ = 21609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21609}=147$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(147)-147}{2*-14634}=\frac{-294}{-29268} =49/4878 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(147)+147}{2*-14634}=\frac{0}{-29268} =0 $
| 4t-t+7=19 | | 4x+19=1/2x | | 0.2x+0.9=0.7x-2.1 | | 0.2x+9=0.7x-2.1 | | -4(8x-5)=-7x-5 | | 2(m-14)=-6 | | 1/2y+1=1/9y | | 6(-6+x)=78 | | 12y+1=19y | | 8+7p−4=4+4p | | 5+8q=9+6q | | -5(v-9)=5v+5 | | 3k-4=31 | | -8y+2=-3(y-9) | | 6(3x+4)÷2=21 | | 7(w-3)=-4w+45 | | -2+2x=14x+4 | | 2(m−14)=-6 | | -1+2x-2+3=22 | | 2x-2+3=x | | 8x+16=4x+18 | | -2(p-9)=8 | | (v+1)^2=40 | | 7(c-5)=7 | | -2(4t-4)+3t=6t-9 | | 43(x+9)=15 | | 24=2x-5+4+x-2 | | z^2=31=9 | | 12=5(v-3)-2v | | 8(3a-6)=(2a-4) | | 9/2x-11/2=25/2 | | 16=2(u+3)-4u |