-5/6x-1/9x=-120

Simple and best practice solution for -5/6x-1/9x=-120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/6x-1/9x=-120 equation:



-5/6x-1/9x=-120
We move all terms to the left:
-5/6x-1/9x-(-120)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
-5/6x-1/9x+120=0
We calculate fractions
(-45x)/54x^2+(-6x)/54x^2+120=0
We multiply all the terms by the denominator
(-45x)+(-6x)+120*54x^2=0
Wy multiply elements
6480x^2+(-45x)+(-6x)=0
We get rid of parentheses
6480x^2-45x-6x=0
We add all the numbers together, and all the variables
6480x^2-51x=0
a = 6480; b = -51; c = 0;
Δ = b2-4ac
Δ = -512-4·6480·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2601}=51$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-51}{2*6480}=\frac{0}{12960} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+51}{2*6480}=\frac{102}{12960} =17/2160 $

See similar equations:

| =5x–13 | | 5x+4-2x=x(x+8) | | 8q+6=6q+4q^2 | | 39=5(w+7)-7w | | w-15=-5 | | 2x-10=2(x+5) | | x-11/16=-7/8 | | -4k-7k= | | 4(x-2)=8(x+1) | | 30+15+0.65x=35+0.75x | | 3(6-4x)=4(2-2x) | | 8(x+1)=8x-3 | | 3x-3+6=2x-3+8 | | 15x+1=6x-8 | | -4k-7k=0 | | 4/5x-7=8.2 | | 15x+1=6x-8 | | -7b+9b=0 | | 38=x+6 | | 3x+32=3x+32 | | 4(w+8)-8w=36 | | 3(2x+3)+2x=41 | | -6b+8b=0 | | 83=y | | −5(3x−9)=2(x−54)−51 | | -3x-12=66 | | 5+3x=6+2 | | 10x-6+2x=90 | | 7y+14=7y+14 | | 1/2+8=5/6f | | 1/2f+8=5/6 | | (8x+7)-10=15 |

Equations solver categories