-5/6x-4.9x=-154

Simple and best practice solution for -5/6x-4.9x=-154 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/6x-4.9x=-154 equation:



-5/6x-4.9x=-154
We move all terms to the left:
-5/6x-4.9x-(-154)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
-4.9x-5/6x+154=0
We multiply all the terms by the denominator
-(4.9x)*6x+154*6x-5=0
We add all the numbers together, and all the variables
-(+4.9x)*6x+154*6x-5=0
We multiply parentheses
-24x^2+154*6x-5=0
Wy multiply elements
-24x^2+924x-5=0
a = -24; b = 924; c = -5;
Δ = b2-4ac
Δ = 9242-4·(-24)·(-5)
Δ = 853296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{853296}=\sqrt{16*53331}=\sqrt{16}*\sqrt{53331}=4\sqrt{53331}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(924)-4\sqrt{53331}}{2*-24}=\frac{-924-4\sqrt{53331}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(924)+4\sqrt{53331}}{2*-24}=\frac{-924+4\sqrt{53331}}{-48} $

See similar equations:

| 6=2(a-5) | | 12.31+19.3h=12.19+4h+16.5h | | 6v^2-11v=95 | | 4x+10+x-2=180 | | 100-(-x)=50 | | x^+4x=7x | | 96=-3(5v-7) | | 18=6v+3v | | 33d+5-20d=31 | | 3z+1=22 | | 68=9(7+y)+5 | | 4b-20=44 | | x^2-117=-4x | | y-(-100)=200 | | -76=10b+9b | | y-100= | | 3(5n-3)=-111 | | (3x-11)=(x-9) | | 3x=4x+11 | | 3z+9=39 | | 3(u-1)=33 | | 3(x-8)=3x+6 | | 2-5d=60 | | 7(1+3x)+x=-169 | | U/0.3=4u+6.27 | | 2+5.3k=18.44 | | 200=(10b+25)-15b | | 7k^2=-1+10k | | 2+5d=60 | | 18p-1=-6+17p | | (3x+53)+6x-35=180 | | 200=(10b25)-15b |

Equations solver categories