-5/6y-1/9y=-102

Simple and best practice solution for -5/6y-1/9y=-102 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/6y-1/9y=-102 equation:



-5/6y-1/9y=-102
We move all terms to the left:
-5/6y-1/9y-(-102)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
Domain of the equation: 9y!=0
y!=0/9
y!=0
y∈R
We add all the numbers together, and all the variables
-5/6y-1/9y+102=0
We calculate fractions
(-45y)/54y^2+(-6y)/54y^2+102=0
We multiply all the terms by the denominator
(-45y)+(-6y)+102*54y^2=0
Wy multiply elements
5508y^2+(-45y)+(-6y)=0
We get rid of parentheses
5508y^2-45y-6y=0
We add all the numbers together, and all the variables
5508y^2-51y=0
a = 5508; b = -51; c = 0;
Δ = b2-4ac
Δ = -512-4·5508·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2601}=51$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-51}{2*5508}=\frac{0}{11016} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+51}{2*5508}=\frac{102}{11016} =1/108 $

See similar equations:

| 4m^2+11m+7=0 | | a2+5a−20=30a2+5a−20=30 | | 20x-9x+6x+(-10x)=-7 | | -8n-3=-6-5n | | 8x=4x+3.6 | | -3x^2-19x-26=0 | | (-7g)-(-6g)+4g=-9 | | 24=4(2x–5) | | -8p^2-31p+4=0 | | 9x-7=-6x+8 | | -x+3x-4=0 | | -1+2r=9+3r | | x^2+(x^2+34x+289)=25^2 | | 9z-(-12z)+(-6z)=-15 | | x+19.46=245.3 | | 2x/3+2=-4 | | 4x+136=11x-11 | | 2x+3x-4=2x+8 | | 18x15=72 | | -6k=-8-7k | | 6x^2=69 | | 2/5=4/5y | | 6=x+1/2 | | -5+5h=4h | | 2(3m–4)=16 | | -4(3x+1)+3(x-2)=-1 | | 0.11x=5 | | -5j=-4j-9 | | 11=(b-3) | | -8p^2-3p+4=0 | | (2b-5)+b+b(b+80)=983 | | 2x+7-4x=19 |

Equations solver categories