If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5/8x-7/40x+1/5=-48
We move all terms to the left:
-5/8x-7/40x+1/5-(-48)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 40x!=0We add all the numbers together, and all the variables
x!=0/40
x!=0
x∈R
-5/8x-7/40x+48+1/5=0
We calculate fractions
1280x^2/8000x^2+(-5000x)/8000x^2+(-1400x)/8000x^2+48=0
We multiply all the terms by the denominator
1280x^2+(-5000x)+(-1400x)+48*8000x^2=0
Wy multiply elements
1280x^2+384000x^2+(-5000x)+(-1400x)=0
We get rid of parentheses
1280x^2+384000x^2-5000x-1400x=0
We add all the numbers together, and all the variables
385280x^2-6400x=0
a = 385280; b = -6400; c = 0;
Δ = b2-4ac
Δ = -64002-4·385280·0
Δ = 40960000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40960000}=6400$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6400)-6400}{2*385280}=\frac{0}{770560} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6400)+6400}{2*385280}=\frac{12800}{770560} =5/301 $
| 9k-3k-4k+k=2k=20 | | -18j+13j-13j=-18 | | 1.5h=378.55 | | 2q-2q+3q-q=14 | | 5y-7+16=54 | | 20=14−2(5a+2) | | 9k-9k+2k-2k+3k=18 | | -2+8x=4(2x+1) | | 70(x+30)+55x=x | | 17n+n+n-22n=10 | | ¼x+2=5 | | 7d+2d-d=8 | | −12(6b-12)+3b=-20 | | -10.5+3x=232.32 | | 17s-17s+2s-2s+4s=20 | | 3t²–4t+36=0 | | 55=43+y | | 12b-6b-6b+2b=6 | | 9b-5b=12 | | 10z-6z=20 | | 1/2n+5=2 | | 3n-3=-3-3n | | x÷4=2=5 | | 1/3c=4-c | | 4y+(-7y)=9 | | 8x+-2+-5x=7 | | 3.6g+9=1.6g+15 | | c-4.3=-6.4 | | n3−5n6=13 | | -5x42=-8 | | 6x+3=x+83 | | 13x=4x+18 |