-5m(m+6)+2(1+3m)=-2m-4m

Simple and best practice solution for -5m(m+6)+2(1+3m)=-2m-4m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5m(m+6)+2(1+3m)=-2m-4m equation:



-5m(m+6)+2(1+3m)=-2m-4m
We move all terms to the left:
-5m(m+6)+2(1+3m)-(-2m-4m)=0
We add all the numbers together, and all the variables
-5m(m+6)+2(3m+1)-(-6m)=0
We multiply parentheses
-5m^2-30m+6m-(-6m)+2=0
We get rid of parentheses
-5m^2-30m+6m+6m+2=0
We add all the numbers together, and all the variables
-5m^2-18m+2=0
a = -5; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·(-5)·2
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{91}}{2*-5}=\frac{18-2\sqrt{91}}{-10} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{91}}{2*-5}=\frac{18+2\sqrt{91}}{-10} $

See similar equations:

| 6z+30-4z-4=9(z+3) | | 48y-42=-6y+25 | | 1x-6=1x | | X+2x=365 | | 3(-1)+4y=9 | | 2x+6x=-12 | | -20.6=v/6-1.4 | | 7.5n+0.9=4.5n-26.1 | | x=1+05x | | (x/3)+(x/6)=(7/2) | | 2n^2=-32 | | n+6.5n+0.9=4.5(n−5.8) | | 2x=1=3x-4 | | 6x-4-x=2(x-1) | | 1/2v=-17/15 | | -3y+5y=10 | | 2x+1=3x–4, | | 2x+1=3x–4 | | (2x-3)x=56-5 | | 16=v/4+12 | | 12x+18x-9+1=-7x+1-9 | | 2(x+7)=3(x+1) | | v-3.19=8.17 | | Z/6+5/6-z/9-1/9=z/4+3/4 | | Y-7=2/3x-6 | | y+14=25 | | 3x–x–4x=18 | | 2(x8+10)=6x+2 | | F(t)=1,5000(1.045 | | A=l(24-2l) | | 6x2−2x+1=06x2−2x+1=0 | | 2k-6=3k-9 |

Equations solver categories