-5p(p-4)-3(-2-p)=p-2

Simple and best practice solution for -5p(p-4)-3(-2-p)=p-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5p(p-4)-3(-2-p)=p-2 equation:



-5p(p-4)-3(-2-p)=p-2
We move all terms to the left:
-5p(p-4)-3(-2-p)-(p-2)=0
We add all the numbers together, and all the variables
-5p(p-4)-3(-1p-2)-(p-2)=0
We multiply parentheses
-5p^2+20p+3p-(p-2)+6=0
We get rid of parentheses
-5p^2+20p+3p-p+2+6=0
We add all the numbers together, and all the variables
-5p^2+22p+8=0
a = -5; b = 22; c = +8;
Δ = b2-4ac
Δ = 222-4·(-5)·8
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{161}}{2*-5}=\frac{-22-2\sqrt{161}}{-10} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{161}}{2*-5}=\frac{-22+2\sqrt{161}}{-10} $

See similar equations:

| 18(−8c+16)−13(6+3c)=0 | | 2x+23=3x-57+x-10 | | y/6-1=-3 | | 32/40+x=0.4 | | -9(x+12)=4(-7x-8) | | n*8=24 | | 8/9=x-2/6 | | 24=-6m+-5+18 | | -4(3n+10)-2n=-124 | | 5n-6n=16 | | 11(7-2x)=4(3x+4) | | 4.9t^2-5t-50=0 | | 8x-11x+-22=-8 | | 14-3x=56 | | 5x-6+3=22 | | -10v-8v=18 | | v/9-8=-9 | | x/14-7=-8 | | x+(2x+3)-1=1/2(4x+28) | | -4=x/6-2 | | 7(8x3)=(7x8)x3 | | 2q+1/3-q-1/4=0 | | 17+y=360 | | 5(3-2m)=65 | | 8+3n=-52 | | x+72=7x | | 8+3n=-54 | | 335-5x=0 | | 2/3x6=-1 | | -143=-13v | | 63=-3()1-2n | | -2=-19+x |

Equations solver categories