If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+30t=0
a = -5; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·(-5)·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*-5}=\frac{-60}{-10} =+6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*-5}=\frac{0}{-10} =0 $
| 5x–2x+7–x=x+6x+4 | | 2x+7=51 | | 332=h+3h | | x-4.6=8.1 | | 7p+54=1p | | 36x+35=467 | | 7=3/w | | 225/c=25 | | 3(c+3)+4c(c+3)=0 | | 3t=60+7t | | 5^(4x+2)=4^2x+3 | | 3t=60-7t | | 3^2y+3^(y+1)=10 | | 1/7x+8=9 | | 1⁄2(4x-7)=2x+8 | | 5^4x+2=4^2x+3 | | 4n-1=31 | | 35+35=55+30x | | 27.76+89.24-x-46=38 | | 3(1850+w)=5745 | | 7(1+11m)-6m=-11m-(7m-7) | | 49q^2-14q=15 | | 6(2610+w)=16110 | | 44-(2c+3)=4(c+5) | | 4(-3x-4)+9(3x-5)=-7+9x+3x+3 | | 2.1=•8-z | | 13/4=d/16 | | x/360*2(3.14)(81.6)=384.3 | | -5x+2=-11 | | 6*c=654 | | x=3/5x2/3 | | 5k-3=47 |