If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+45t+50=0
a = -5; b = 45; c = +50;
Δ = b2-4ac
Δ = 452-4·(-5)·50
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-55}{2*-5}=\frac{-100}{-10} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+55}{2*-5}=\frac{10}{-10} =-1 $
| 2(8+6c)=4(-8+c) | | (x/30)-(1/5x)=(1/6) | | 3(2-a)+6=5a | | 14-8d=2d+4 | | 14-8d=2d+3 | | 9x-4.3x+3x=0 | | 8x-26=5x-14 | | 2=y+0.25. | | z/8+3=-87 | | v*0.5=90 | | 2=y+0.25 | | 2=y+0.5 | | 45+0.5n=2n | | (1-x)4=44 | | 210=5.25x | | 1.4m=28 | | 28w2+13=20 | | -112=14a | | 25-18=r | | -70=5(2x-6) | | 7m=6m=13 | | c+-20=-40 | | 32-(-x)=-49 | | 29-(-x)=24 | | 29-(-x)=-49 | | -6r=102 | | 9=v+-5 | | 8(s+2)=64 | | 140=10y | | 2+m=21 | | 21+6r=93 | | 7+1=4y |