If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2-80t+320=0
a = -5; b = -80; c = +320;
Δ = b2-4ac
Δ = -802-4·(-5)·320
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80\sqrt{2}}{2*-5}=\frac{80-80\sqrt{2}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80\sqrt{2}}{2*-5}=\frac{80+80\sqrt{2}}{-10} $
| x-6/8=1/4 | | 2(x+3)=8x-2 | | 32=8(j−90) | | 3/11=6/p | | 2x-(4x-5)=17+2x | | 1.4=x-41 | | f/4+3=10 | | -9-7x=-7.1x(-5) | | −71=x64 | | 27)x15=11 | | 168=−84nn=-2 | | 3y+4y+7=112 | | 5=n/6-16 | | 9=r÷6 | | 2x=+5x+30 | | −2=m16 | | 100÷c=54 | | 2x+.15x=2.1 | | x=61+90 | | x=36+75 | | x=49+90 | | (3w+4)w=15 | | 4/5x+1/2=6 | | 366+x=585+x | | x-19=62 | | 16.5x+289=18.75+274.6x | | 240+.25x=18+.4x | | 4x+22(14×70)=10000 | | (w-2)w=35 | | (w-20w=35 | | -20-x=9x+7 | | 2.33x+.33x=1+1.67x |