-5x(3x+4)-6(3+5x-3+4)=10x

Simple and best practice solution for -5x(3x+4)-6(3+5x-3+4)=10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(3x+4)-6(3+5x-3+4)=10x equation:



-5x(3x+4)-6(3+5x-3+4)=10x
We move all terms to the left:
-5x(3x+4)-6(3+5x-3+4)-(10x)=0
We add all the numbers together, and all the variables
-5x(3x+4)-6(5x+4)-10x=0
We add all the numbers together, and all the variables
-10x-5x(3x+4)-6(5x+4)=0
We multiply parentheses
-15x^2-10x-20x-30x-24=0
We add all the numbers together, and all the variables
-15x^2-60x-24=0
a = -15; b = -60; c = -24;
Δ = b2-4ac
Δ = -602-4·(-15)·(-24)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{15}}{2*-15}=\frac{60-12\sqrt{15}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{15}}{2*-15}=\frac{60+12\sqrt{15}}{-30} $

See similar equations:

| 8x^2+196=676 | | x=60*0.2 | | .3.7+2.75k=27.35 | | 1,750x23=40,250 | | -15.3=27.5k+55.2 | | x*Y=2.8 | | 4x/2+12=-14–10 | | 7y=13.50+17.55 | | n=616n-12 | | 23y-6=2 | | n=6n16-12 | | 150=(n-2) | | 150=(n-2)/n | | x+2x+60+(x+30)+(x-10)+(x+40)=(6-2)180 | | 9i-7=10i-10 | | y2+2y-164=0 | | 7/4=-1x | | 4b^2-15b-2=0 | | v÷4=1.3 | | 1.4x5=7 | | 2(x^2+5x+4)(2x+5)=0 | | 0.6x5=3 | | f÷ 9 = 3/10 | | 2(45+7x)=75-8x | | 4·0.3=d | | m+87=87 | | m÷1=6.7 | | k÷ 12= 14 | | k÷1/2=1/4 | | 4(2n+1)=9(7n+8)+5 | | 2x+3=×+4 | | b-5/2=2/3 |

Equations solver categories