-5x(x+1)=x-1+4(3x+2)

Simple and best practice solution for -5x(x+1)=x-1+4(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(x+1)=x-1+4(3x+2) equation:



-5x(x+1)=x-1+4(3x+2)
We move all terms to the left:
-5x(x+1)-(x-1+4(3x+2))=0
We multiply parentheses
-5x^2-5x-(x-1+4(3x+2))=0
We calculate terms in parentheses: -(x-1+4(3x+2)), so:
x-1+4(3x+2)
determiningTheFunctionDomain x+4(3x+2)-1
We multiply parentheses
x+12x+8-1
We add all the numbers together, and all the variables
13x+7
Back to the equation:
-(13x+7)
We get rid of parentheses
-5x^2-5x-13x-7=0
We add all the numbers together, and all the variables
-5x^2-18x-7=0
a = -5; b = -18; c = -7;
Δ = b2-4ac
Δ = -182-4·(-5)·(-7)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{46}}{2*-5}=\frac{18-2\sqrt{46}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{46}}{2*-5}=\frac{18+2\sqrt{46}}{-10} $

See similar equations:

| 8b+17=67 | | 19x–15=16x | | 250x+40=710 | | 16v-7=13v+20+18 | | 5=-5v+2(v-8) | | 3y+2/5=4 | | 4÷15=2÷y+8 | | 6u+5=8u-11 | | -7j-18=-9j | | 3h=15=3×5=15 | | -8+6y=2y | | 2x^2-8x+6=-2 | | 9x+9=4x-24 | | 3x-4(1-x)=24 | | 6k+20=1-13k | | 6.6g+2=1.6g+32 | | 2(x+8)=2x+16+4x | | 7(-2+9)-3x=97 | | -7r+3=-45 | | y/2+7=16 | | 10y-8=8y | | U/2+8=u-8 | | -9=9(y-6) | | 2/3(x-7)=—2 | | p+-3=81/2 | | 3^5x+4=81^6 | | 2x+31=x+65 | | -5=w+5 | | K=2.75x | | 10+3q=7q-8q-10 | | k/8−1=2 | | 2x+19x=1,085 |

Equations solver categories