-5x-(-7x-4x)=-2x(3x+4)

Simple and best practice solution for -5x-(-7x-4x)=-2x(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x-(-7x-4x)=-2x(3x+4) equation:



-5x-(-7x-4x)=-2x(3x+4)
We move all terms to the left:
-5x-(-7x-4x)-(-2x(3x+4))=0
We add all the numbers together, and all the variables
-5x-(-11x)-(-2x(3x+4))=0
We get rid of parentheses
-5x+11x-(-2x(3x+4))=0
We calculate terms in parentheses: -(-2x(3x+4)), so:
-2x(3x+4)
We multiply parentheses
-6x^2-8x
Back to the equation:
-(-6x^2-8x)
We add all the numbers together, and all the variables
-(-6x^2-8x)+6x=0
We get rid of parentheses
6x^2+8x+6x=0
We add all the numbers together, and all the variables
6x^2+14x=0
a = 6; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·6·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*6}=\frac{-28}{12} =-2+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*6}=\frac{0}{12} =0 $

See similar equations:

| -5/6b=15/8 | | 4x-5+x+30=17 | | 2x-6=45-3x | | 6(x-6)4=-32+6x | | 14=3.50x-3.5 | | -7(y-1)=-4y+22 | | 3(r-1)=2(r+9) | | 6(x-6)4=-326x | | 1/3(16x+3)=2x=5 | | -0.25x+4.5=-1x | | 96=l-4 | | x+4+2x-9=55 | | -4/5c=-2/5 | | x°+(x+10)°+(x+5)°=90° | | 8=4y+20-7y | | 0.72=0.4(x1.4) | | 4(a−4)−2a=2(a−5)−6 | | x=-3/8+10 | | 6(w-4)+5w=31 | | 2m2-11m+12=0 | | 5(z+5)−24=5z−13 | | 9x+36x-7=9(5x+5) | | 7x-22+4x+17=9x+9 | | 3c+2c-5=2c+4 | | -42=7(8-7x) | | 9x-7x+4x=22+7-9 | | 2(-4x-7)-5(2-5x)=48+18x | | 2x-11=5+(x-4) | | 35x+59=35x+41 | | 36=3(w+3)-6w | | (8x-22)+9=19 | | d-1/5=-6 |

Equations solver categories