If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+242=0
a = -5; b = 0; c = +242;
Δ = b2-4ac
Δ = 02-4·(-5)·242
Δ = 4840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4840}=\sqrt{484*10}=\sqrt{484}*\sqrt{10}=22\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{10}}{2*-5}=\frac{0-22\sqrt{10}}{-10} =-\frac{22\sqrt{10}}{-10} =-\frac{11\sqrt{10}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{10}}{2*-5}=\frac{0+22\sqrt{10}}{-10} =\frac{22\sqrt{10}}{-10} =\frac{11\sqrt{10}}{-5} $
| -(1/2u-12)+4=5/u-6 | | x^2+11x-18=1 | | 16w-2w+2w-16w+2w=12 | | 4x+3•2=102 | | 4x-5°=3x+2° | | 4x(x-4)=35 | | x^2+11x-19=1 | | x(5)+(x+150)(3)=4730 | | 3(2x+6)=12x+13-6x+5 | | 3(2x+8)=-8+26 | | 169x+25x=8 | | 2w+6w-3=428 | | Z=-13-8i | | -4-x=6(5+6x)-3x | | 4x+3x2=102 | | 10=3p+5 | | 4*(2*9)=(4*n)*9 | | Y=-1/2x+5/3 | | 6k-k-k+k-3k=18 | | 169x+8x=25 | | -3p+10=-10-p | | 3x+14=21x+32 | | 0.2x-8=-8 | | 7(7x+2)=49x-10 | | 17b-9b-5b=15 | | 32-2c+4=2c+4+c | | w+7.8=9.43 | | 7(3x+2)-5x=142 | | -5=2u+5 | | -0.6+0.2x0.8x-1.8=0 | | 25x+8x=169 | | 2(2y-9)=2(y-3) |