If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+2x+5=0
a = -5; b = 2; c = +5;
Δ = b2-4ac
Δ = 22-4·(-5)·5
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{26}}{2*-5}=\frac{-2-2\sqrt{26}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{26}}{2*-5}=\frac{-2+2\sqrt{26}}{-10} $
| -5x²+2x+5=0 | | +9x-6=2x+29 | | 3x+12-12=27-12 | | 15x-45+25=0 | | 2x=5x+1÷7+3x-5÷2 | | 3x²-7x-10=0 | | 4x+7x+7x+7x+11x+10x+8x=180 | | 4-4x4+8=X | | n/4=6+6 | | n/4=6+6 | | 2a=18/9 | | 2(9x+8)=3(2x+8)42 | | 2(9x+8)=3(2x+8)42L | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | 3x(2)+6x-6=-2X(2) | | B=20,b-6 | | 2-5x4+7= | | 2-5x4+7= | | 2-5x4+7=x | | (x+27+8)=2×(x+8) | | (x+27+8)=2(x+8) | | (x+27+8)=2(x+8) | | 4(2x+)-3x=-17 | | 4(2x+)-3x=-17 |