-5y+7/3y=-5-8/3y-4

Simple and best practice solution for -5y+7/3y=-5-8/3y-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5y+7/3y=-5-8/3y-4 equation:



-5y+7/3y=-5-8/3y-4
We move all terms to the left:
-5y+7/3y-(-5-8/3y-4)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 3y-4)!=0
y∈R
We add all the numbers together, and all the variables
-5y+7/3y-(-8/3y-9)=0
We get rid of parentheses
-5y+7/3y+8/3y+9=0
We multiply all the terms by the denominator
-5y*3y+9*3y+7+8=0
We add all the numbers together, and all the variables
-5y*3y+9*3y+15=0
Wy multiply elements
-15y^2+27y+15=0
a = -15; b = 27; c = +15;
Δ = b2-4ac
Δ = 272-4·(-15)·15
Δ = 1629
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1629}=\sqrt{9*181}=\sqrt{9}*\sqrt{181}=3\sqrt{181}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{181}}{2*-15}=\frac{-27-3\sqrt{181}}{-30} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{181}}{2*-15}=\frac{-27+3\sqrt{181}}{-30} $

See similar equations:

| 9d+18=126 | | 8m+50=98 | | 200+5t=250 | | 2(3x+4)=5x+14-2x | | y-y+1/3=1+y-1/3 | | 3x/4-1=7x/12+3 | | 3^X=2^x=1 | | 3x=2x=1 | | 2-x=0.25x^2-1 | | 2-x=0.25x^2+4x-12 | | x*0.2=1000 | | x*20/100=1000 | | 27-5e=21 | | 6x+6=5x-24 | | 7x=36+2x | | 2x+4x=-3x-72 | | 6x^2-36^(4-x)=0 | | 4x^=48 | | -4x=-9+45 | | 12x=7x-65 | | 2x-1=14-1x | | 7x-2=14x+5 | | 11=7x+1 | | 10x+33=13 | | 6^2.15x=37 | | 2y+8=4+6y | | 9(2-s)-(5s+1)=5(3-s)-10s | | 10x+40=3x-44 | | 2(7q-8)=7 | | c+4=136 | | 3x7=7+6 | | 3x7=5+6 |

Equations solver categories