-6(3/4x-2)+3=1/2x+7

Simple and best practice solution for -6(3/4x-2)+3=1/2x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6(3/4x-2)+3=1/2x+7 equation:



-6(3/4x-2)+3=1/2x+7
We move all terms to the left:
-6(3/4x-2)+3-(1/2x+7)=0
Domain of the equation: 4x-2)!=0
x∈R
Domain of the equation: 2x+7)!=0
x∈R
We multiply parentheses
-18x-(1/2x+7)+12+3=0
We get rid of parentheses
-18x-1/2x-7+12+3=0
We multiply all the terms by the denominator
-18x*2x-7*2x+12*2x+3*2x-1=0
Wy multiply elements
-36x^2-14x+24x+6x-1=0
We add all the numbers together, and all the variables
-36x^2+16x-1=0
a = -36; b = 16; c = -1;
Δ = b2-4ac
Δ = 162-4·(-36)·(-1)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*-36}=\frac{-16-4\sqrt{7}}{-72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*-36}=\frac{-16+4\sqrt{7}}{-72} $

See similar equations:

| 6w-10=-8+12w | | 2x+6+7=10x+5 | | 2k-21=-19 | | 4v+14=-12v+4 | | c-(8*11)=11-(4c*(-2) | | 2/5k=-9 | | -x-7=-3x+5 | | 14x+57-4x=-7(x+1)-140 | | 7n-63=3n-11 | | 3(x-4)+12=5x-15 | | 1.4=n12 | | 89=9a-2 | | 2-3x4.5=11.5 | | 3x+2-2x+12=15 | | 8x+12=4(2x-3) | | 24+y=43 | | 3(x+5)+2x=10x+20 | | 21s-14=7s+18 | | 1/4=y/12y= | | 3r-5=2(4r-9 | | 24+y=42 | | 120=15x+5 | | 176=8-6(6b+2) | | 9=y/15 | | 93+63+3x=180 | | 10x-42=5(2x-10) | | -(x+2)-3x=-6x-10 | | 0.33x-4=0.66(3x-2) | | c2-6=43 | | 73x=-26 | | 4(x-3)+2x=3x-12 | | 2x+1-4/x=3 |

Equations solver categories