If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6-2/393x-14)=5/3x-4
We move all terms to the left:
-6-2/393x-14)-(5/3x-4)=0
Domain of the equation: 393x!=0
x!=0/393
x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
-2/393x-14)-(5/3x-10)=0
We add all the numbers together, and all the variables
-2/393x-14)-(5/3x=0
We calculate fractions
(-6x)/1179x^2-(5*393x)/1179x^2+(-14)=0
We add all the numbers together, and all the variables
(-6x)/1179x^2-(+5*393x)/1179x^2+(-14)=0
We add all the numbers together, and all the variables
(-6x)/1179x^2-(+5*393x)/1179x^2-14=0
We multiply all the terms by the denominator
(-6x)-(+5*393x)-14*1179x^2=0
Wy multiply elements
-16506x^2+(-6x)-(+5*393x)=0
We get rid of parentheses
-16506x^2-6x-5*393x=0
Wy multiply elements
-16506x^2-6x-1965x=0
We add all the numbers together, and all the variables
-16506x^2-1971x=0
a = -16506; b = -1971; c = 0;
Δ = b2-4ac
Δ = -19712-4·(-16506)·0
Δ = 3884841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3884841}=1971$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1971)-1971}{2*-16506}=\frac{0}{-33012} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1971)+1971}{2*-16506}=\frac{3942}{-33012} =-219/1834 $
| 5x-15=3x+21 | | 4x-6=0.3 | | 3n+3-8=-11 | | 26=n-(-4) | | 3a-6a+2=8a+20-5 | | -5n+4+2=-4 | | 4(-1r+4)=12 | | .4y+2=18 | | a2+7a-3=0 | | 7m-22=24 | | r+3-8r=10 | | m+(-10)=70 | | 3x-6=12-4x | | 18g-12=1-g | | 10x+x=2 | | 1/3n^2+1/3n-10=0 | | -5x=-6x-6 | | 4x^2+24x-23=0 | | p=L.W | | 6^(x-5)=7 | | 5(4x-2)=11 | | 1/4x-2=16 | | x+5/3-3=6 | | (1/4)x-2=16 | | 10(m-3)=90 | | 14z=-14 | | 3x-6=-14+2x | | 5s/4=15 | | 6x+7x+10=36 | | 5(3x+2)+4)+2x=67 | | x-3/2+2=6 | | 1/3x+9=26/3 |