-6/5k+9/2=6-3/2k

Simple and best practice solution for -6/5k+9/2=6-3/2k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6/5k+9/2=6-3/2k equation:



-6/5k+9/2=6-3/2k
We move all terms to the left:
-6/5k+9/2-(6-3/2k)=0
Domain of the equation: 5k!=0
k!=0/5
k!=0
k∈R
Domain of the equation: 2k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-6/5k-(-3/2k+6)+9/2=0
We get rid of parentheses
-6/5k+3/2k-6+9/2=0
We calculate fractions
(-48k)/40k^2+15k/40k^2+45k/40k^2-6=0
We multiply all the terms by the denominator
(-48k)+15k+45k-6*40k^2=0
We add all the numbers together, and all the variables
60k+(-48k)-6*40k^2=0
Wy multiply elements
-240k^2+60k+(-48k)=0
We get rid of parentheses
-240k^2+60k-48k=0
We add all the numbers together, and all the variables
-240k^2+12k=0
a = -240; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-240)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-240}=\frac{-24}{-480} =1/20 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-240}=\frac{0}{-480} =0 $

See similar equations:

| -15=-27k | | 1/2×n=8 | | 8x-32-2=6-9x+7x | | A^2+18a-71=-2 | | 6x-12=-2x+12 | | X^+2+8x-75=10 | | 5x=(-2)=6x+4 | | 6(6-6a)=180 | | (1.25)^x=21 | | 6x+3-42=9 | | 6w-6=3w+9 | | 5x+-3=-23 | | 5x+-3=23 | | 3x-31=-22 | | p5+27=33 | | 5x/15-3x/15=3 | | 2(x+6)=30+3x | | x+2x+5x=0 | | 5x-3x=3 | | 6k+14=8k-10 | | p5+ 27=33 | | 5x+5=4x−10 | | 7u-85=63 | | -3x-(+9)=-27 | | 7(u−85)=63 | | 3x-21=x | | 2p-38=34 | | 19=7+3d | | 34=2p−38 | | 4k-21=9 | | 8x+(-7)=-5 | | 9=21−4k |

Equations solver categories