-64+8x=2(2/5x+5)

Simple and best practice solution for -64+8x=2(2/5x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -64+8x=2(2/5x+5) equation:



-64+8x=2(2/5x+5)
We move all terms to the left:
-64+8x-(2(2/5x+5))=0
Domain of the equation: 5x+5))!=0
x∈R
We multiply all the terms by the denominator
8x*5x-64*5x+5))-(2(2+5))=0
We add all the numbers together, and all the variables
8x*5x-64*5x+5))-(27)=0
We add all the numbers together, and all the variables
8x*5x-64*5x=0
Wy multiply elements
40x^2-320x=0
a = 40; b = -320; c = 0;
Δ = b2-4ac
Δ = -3202-4·40·0
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{102400}=320$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-320}{2*40}=\frac{0}{80} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+320}{2*40}=\frac{640}{80} =8 $

See similar equations:

| 84=50-4p | | f/5-1=1 | | 8(j-4)=2(4j-6) | | 4x^+20=2 | | -4x=8x+24 | | 2j+17=19 | | 8u=23 | | 62.8=28+2*a | | 8=6+3f | | 40=m/3+55 | | 8y+32=8y+38 | | 3x^2+17=178 | | 3(x+4)=(x+8) | | -13-96=135-2x | | c/7-1=1 | | (4x+28)+(14x+8)=90 | | x37=7-5 | | 3-(2-x)=6-(2x+1) | | -12=5t+8 | | 6(x-$1.50)=$46.50 | | 28a=280 | | –2s–12=–20 | | x/3=x-10/9 | | x2+x+53=4–13x | | 30=9y-6 | | 6(y+1)=12 | | 13d-8d-3d=8 | | 14=v/3 | | 3n-24+12=3n+7 | | x=−3+√414,−3−√414 | | 3n-24+12=3n+ | | -3y+2/3=2y-4.1 |

Equations solver categories