-66=9(-7-8r)72r

Simple and best practice solution for -66=9(-7-8r)72r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -66=9(-7-8r)72r equation:



-66=9(-7-8r)72r
We move all terms to the left:
-66-(9(-7-8r)72r)=0
We add all the numbers together, and all the variables
-(9(-8r-7)72r)-66=0
We calculate terms in parentheses: -(9(-8r-7)72r), so:
9(-8r-7)72r
We multiply parentheses
-5184r^2-4536r
Back to the equation:
-(-5184r^2-4536r)
We get rid of parentheses
5184r^2+4536r-66=0
a = 5184; b = 4536; c = -66;
Δ = b2-4ac
Δ = 45362-4·5184·(-66)
Δ = 21943872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21943872}=\sqrt{5184*4233}=\sqrt{5184}*\sqrt{4233}=72\sqrt{4233}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4536)-72\sqrt{4233}}{2*5184}=\frac{-4536-72\sqrt{4233}}{10368} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4536)+72\sqrt{4233}}{2*5184}=\frac{-4536+72\sqrt{4233}}{10368} $

See similar equations:

| 2(8x+4)=-120 | | 2.25x=1.75 | | 12+2x+27=x+28 | | 8x-39=3(x+2) | | 12+6x-42=6x+4 | | 3.3=1.5-0.4x | | 7b-2/6=6b-7/5 | | 16^-r-1=1/4 | | 9+2x+17=18+x | | 9-2y=5=2y | | 3(5+9b)+11=-244 | | 1/3n+2=-6 | | (6x2+11x-35)=0 | | X-3;x=6 | | D/9+840+d/9=1020 | | -3(5+9b)+11=-244 | | 0.1x+x+(x-135)=180 | | 2(x+x-18)=2(2x-18) | | 3x+7-6=1 | | 47-(3x-38)=7x-95 | | 2-3t=5 | | 21+3h=(h+7) | | (3x−38)+(7x−95)=47 | | 7x-12x=5x+4 | | 10x+3000=7500 | | 8.5(3y+4)=3.5(y-28) | | -7x-10-x=-58 | | 5=2x-4x | | d/4+d/6=5 | | 7*l=105 | | 2x°+x°+(x-20)°=180° | | (7)2(b+3)=4b-2 |

Equations solver categories