If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+22x+40=0
a = -6; b = 22; c = +40;
Δ = b2-4ac
Δ = 222-4·(-6)·40
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-38}{2*-6}=\frac{-60}{-12} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+38}{2*-6}=\frac{16}{-12} =-1+1/3 $
| -3x+6=-5x+0 | | -7z-10+15z=-22z+83 | | (X-2)+x+(x+2)=30+(x+2) | | ^2x-x=-4 | | X=10x+20 | | 2+2x=5x-25 | | -10+3x=2x-17 | | 3z/10-7=3 | | -9(z+8)=9z-72 | | (x-5)+29=360 | | 10^4+8x-2=0 | | 110+7x=360 | | 7x/6=4x+24 | | 4x+2|3=6 | | 1x+5=2x-13 | | (4x+3)/4-(2x)/x+1=x | | 1/7x+2-3x+5/3=x-6/7+x/3+10 | | 8+7x=-6x+47 | | 2x²=8 | | (5x-1)^2=12 | | a=2*7^2+4*7*9 | | -t=(t-10) | | 4x^2+3/x=0 | | 7=47-4.9x^2 | | 4x^2+3x^-1=0 | | x2-9/6=0 | | 12a+6a+8+6a+8+10a-4=250 | | 80-5d^2=0 | | 250=12a+6a+8+6a+8+10a-4 | | 8(u-2)-4u=12 | | x3-x2=48 | | x8+30=x+16 |