-6x2+7x=7x-4

Simple and best practice solution for -6x2+7x=7x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6x2+7x=7x-4 equation:



-6x^2+7x=7x-4
We move all terms to the left:
-6x^2+7x-(7x-4)=0
We get rid of parentheses
-6x^2+7x-7x+4=0
We add all the numbers together, and all the variables
-6x^2+4=0
a = -6; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-6)·4
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-6}=\frac{0-4\sqrt{6}}{-12} =-\frac{4\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-6}=\frac{0+4\sqrt{6}}{-12} =\frac{4\sqrt{6}}{-12} =\frac{\sqrt{6}}{-3} $

See similar equations:

| 9x2+2=7x2-10 | | 27x2=27 | | 1+1+1+1+1+(0.75+1+0.75+1+0.75)*60.75+1+0.75+1+0.75+1+0.75=x | | 22=v/2+17 | | 23x2=18x-2x2 | | (3x-15)+48+90=180 | | 3(18.50)+2x=104.5 | | 2(x-4)+x=x-7 | | 0=19.3t+-4.905t^2 | | 3x+4+9x+2=2 | | 3(x+40)+9=21 | | -7w+2=2(w-1) | | 8.4/4.8=6.3/k | | 7+-10z=57 | | 11x+8=16x-8 | | 400=3x-20 | | -2(-12-6k)=-9(15k) | | 19t+5t^2=0 | | 5y+12=9y-2 | | -1=k+7/9 | | -48-x=39 | | -m3/2+9=0 | | 100-6=0.5x | | 3/4(8x-4)=7+2 | | 6+m-m=-2 | | 5(3x-2)=4(2x1) | | -5/6z-3=47 | | 20/3x-5=5/x-2 | | 8(y-1)=3y=6(2y-6) | | 15=-11y | | 30)-7(5-7k)=161 | | 8n−4=6n+6​ |

Equations solver categories