-6y-3(6y-6)=-2+1(-7-y)y=

Simple and best practice solution for -6y-3(6y-6)=-2+1(-7-y)y= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6y-3(6y-6)=-2+1(-7-y)y= equation:



-6y-3(6y-6)=-2+1(-7-y)y=
We move all terms to the left:
-6y-3(6y-6)-(-2+1(-7-y)y)=0
We add all the numbers together, and all the variables
-6y-3(6y-6)-(-2+1(-1y-7)y)=0
We multiply parentheses
-6y-18y-(-2+1(-1y-7)y)+18=0
We calculate terms in parentheses: -(-2+1(-1y-7)y), so:
-2+1(-1y-7)y
determiningTheFunctionDomain 1(-1y-7)y-2
We multiply parentheses
-1y^2-7y-2
Back to the equation:
-(-1y^2-7y-2)
We add all the numbers together, and all the variables
-(-1y^2-7y-2)-24y+18=0
We get rid of parentheses
1y^2+7y-24y+2+18=0
We add all the numbers together, and all the variables
y^2-17y+20=0
a = 1; b = -17; c = +20;
Δ = b2-4ac
Δ = -172-4·1·20
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{209}}{2*1}=\frac{17-\sqrt{209}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{209}}{2*1}=\frac{17+\sqrt{209}}{2} $

See similar equations:

| 4(1y+1)=21 | | 10x-20=3x-10 | | -7x+1=-3 | | 5(4x+6)+3(2x+6)+6=26x+55 | | (6x+2)=(9x-13) | | 2(5x+5)+5(5x+2)+3=35x+23 | | 2x-5(x-3)=-9+5x-8 | | 8x-50+3x+60=180 | | 2x-5(x-3)=-9+5x8 | | 39*y=84.5 | | 2/5(2d-4)=3(d+2)-4/5d | | 2=4(v-3)-6v | | 8x=46-x | | 4w-100=2w | | −b6−50=−6b​ −50= | | F(x)=15-6 | | 14x-10=50 | | 26x-6=48 | | 3.5*(1.072)^x=10.5 | | -6y+45=-3 | | 13x+13=104 | | 3(x-5)+2(14~3x)=7 | | 4=1.015^x | | 4/x=17/25 | | 40/x=15/4.5 | | F(x+2)=4x^2+3 | | 4n2−9n−2=0 | | 47=v+27 | | s+33-4=3s+3 | | 3.6(2x+5)=7.2x+18 | | 11t=3 | | 15t=t+42 |

Equations solver categories