If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7(-1/8)x-3/4=20
We move all terms to the left:
-7(-1/8)x-3/4-(20)=0
Domain of the equation: 8)x!=0determiningTheFunctionDomain -7(-1/8)x-20-3/4=0
x!=0/1
x!=0
x∈R
We multiply parentheses
7x^2-20-3/4=0
We multiply all the terms by the denominator
7x^2*4-3-20*4=0
We add all the numbers together, and all the variables
7x^2*4-83=0
Wy multiply elements
28x^2-83=0
a = 28; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·28·(-83)
Δ = 9296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9296}=\sqrt{16*581}=\sqrt{16}*\sqrt{581}=4\sqrt{581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{581}}{2*28}=\frac{0-4\sqrt{581}}{56} =-\frac{4\sqrt{581}}{56} =-\frac{\sqrt{581}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{581}}{2*28}=\frac{0+4\sqrt{581}}{56} =\frac{4\sqrt{581}}{56} =\frac{\sqrt{581}}{14} $
| (11x)+(10x+12)=180 | | 16x/4=68 | | 7b-2=2b+13 | | 21-6x3=27-8x3 | | (5x)+(4x+6)+(10x)+(12x-12)=180 | | -8-h=2(-0.5h+4) | | -4+5n=18+3n | | 3/7x+3=1 | | 5x+4=-5+3x+13 | | 4+6=3x+4 | | 4x-9=3.5x+1 | | 3x+2x-5=60 | | –u+9=–2u | | -(6m+8)=4U7-m) | | 5w-8w+20w=6w | | -5m-12+2m=12 | | 2.25/6=x/5 | | 0.2x+1/2=0.8 | | 7x+2+4x-5=180 | | 12=8(1-4x-3x-24 | | z-14=12 | | 17=29+3x/4 | | 5x+8x+10=46 | | 7x1-4=-2+9x-5 | | 9x+5(x-4)=34 | | -16.9=2a+11.6+3a | | 5(2x+9)=-50+75 | | +4x+12=+6x-32 | | 5/9(x+9)=40 | | 1-7m=-9-8m+6-m | | 5=1+3v-5 | | -2x+8=-x-7 |