-7(7/9)n=-7

Simple and best practice solution for -7(7/9)n=-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7(7/9)n=-7 equation:



-7(7/9)n=-7
We move all terms to the left:
-7(7/9)n-(-7)=0
Domain of the equation: 9)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
-7(+7/9)n-(-7)=0
We add all the numbers together, and all the variables
-7(+7/9)n+7=0
We multiply parentheses
-49n^2+7=0
a = -49; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-49)·7
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*-49}=\frac{0-14\sqrt{7}}{-98} =-\frac{14\sqrt{7}}{-98} =-\frac{\sqrt{7}}{-7} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*-49}=\frac{0+14\sqrt{7}}{-98} =\frac{14\sqrt{7}}{-98} =\frac{\sqrt{7}}{-7} $

See similar equations:

| 32y=y=16 | | -104=(-4)(b+8)-5 | | 6m+3=(1+9m) | | (x-2)2=-4x+2x2 | | x/14=2x+5/30 | | -5z+3=17-19z | | -354=-6(-7b+3) | | -328=8(6a-6)+8a | | 8x-15=3x+26 | | -10f=9-11f | | -10f=9−11f | | -8-18g=-16g | | 1-5x=-6x+10 | | 7y-8(y-4)=9+y | | 17y+14=18y+20 | | 12b+9=12b/11 | | 12-6x+4,8=0 | | x^2+8.5x+72.25=76.75 | | -13j-17=-14j | | q+1/2=q-1/2 | | -12n+4=0 | | 147=7(4r+5) | | -2k-(k-5)=-3k | | -17-3m=-5m-5 | | 4a+5-7a=-13 | | 18=6+3x2 | | 4(5+2b)+7b=125 | | -7x+4+4=-6+1 | | 5x+7=2x+5 | | p-1=20+p-3+2p | | -2(3m-8)=-12+m | | b+3=7b+3 |

Equations solver categories