-7(a-7)(1-5a)=62

Simple and best practice solution for -7(a-7)(1-5a)=62 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7(a-7)(1-5a)=62 equation:



-7(a-7)(1-5a)=62
We move all terms to the left:
-7(a-7)(1-5a)-(62)=0
We add all the numbers together, and all the variables
-7(a-7)(-5a+1)-62=0
We multiply parentheses ..
-7(-5a^2+a+35a-7)-62=0
We multiply parentheses
35a^2-7a-245a+49-62=0
We add all the numbers together, and all the variables
35a^2-252a-13=0
a = 35; b = -252; c = -13;
Δ = b2-4ac
Δ = -2522-4·35·(-13)
Δ = 65324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{65324}=\sqrt{4*16331}=\sqrt{4}*\sqrt{16331}=2\sqrt{16331}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-2\sqrt{16331}}{2*35}=\frac{252-2\sqrt{16331}}{70} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+2\sqrt{16331}}{2*35}=\frac{252+2\sqrt{16331}}{70} $

See similar equations:

| 0=-8n-n | | X+x/2=16 | | k^2-7k-6=0 | | -15=1-4a-8 | | 10x-2x+66=10x+26 | | 5x+14+38+73=180 | | 6p-20=4p | | -k^2-7k-6=0 | | 5(x-2)+x=40-2x-10 | | 11x-9+7x+7=180 | | 5=2x+5+1=3x-2 | | a/(-2)-3=(-7) | | y+31/2=35/6 | | -33=b-17 | | 4.5x=19 | | -6x+9=-2x-15 | | -10=-5.5+b | | 30-5p+1+12p=56 | | -7(n-5)=14-4n | | (–a/6)+5=2 | | -96=-3(5r+2) | | 0.3+0.5x+1.6=5 | | x-(-0.93)=5.13 | | n+4n=100 | | Y/z=15 | | 3x-4=x+6 | | 5^(x-1)=105 | | 2y-4+11=0 | | -10=-3/2(-4)+b | | 7n+42+6n=81 | | x^-2=14 | | x-6=18-7x |

Equations solver categories