-7(x+2)3x=-3(2x-3)+x

Simple and best practice solution for -7(x+2)3x=-3(2x-3)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7(x+2)3x=-3(2x-3)+x equation:



-7(x+2)3x=-3(2x-3)+x
We move all terms to the left:
-7(x+2)3x-(-3(2x-3)+x)=0
We multiply parentheses
-21x^2-42x-(-3(2x-3)+x)=0
We calculate terms in parentheses: -(-3(2x-3)+x), so:
-3(2x-3)+x
We add all the numbers together, and all the variables
x-3(2x-3)
We multiply parentheses
x-6x+9
We add all the numbers together, and all the variables
-5x+9
Back to the equation:
-(-5x+9)
We get rid of parentheses
-21x^2-42x+5x-9=0
We add all the numbers together, and all the variables
-21x^2-37x-9=0
a = -21; b = -37; c = -9;
Δ = b2-4ac
Δ = -372-4·(-21)·(-9)
Δ = 613
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-\sqrt{613}}{2*-21}=\frac{37-\sqrt{613}}{-42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+\sqrt{613}}{2*-21}=\frac{37+\sqrt{613}}{-42} $

See similar equations:

| 5-x-26=3(4x+5) | | 35/6+4/3p=45/18 | | 14-5/4x=9 | | 5(2n-3)=10+14 | | 9x-11=7x+5 | | 3-(x-3)=25 | | (2x-4)+(x+3)=x-2 | | 2/5-m=9/3m-6 | | 3x-1+7x+21=180 | | 7*(-45+y)=-5 | | 2(x+8)=38 | | 31-7x=13+11x | | 3x^2+8=83  | | 10/6=n/10 | | x+73+63+x+54=180 | | 5(a+4)=6a+1=12 | | 22s^2-748s-7392=0 | | 9x+17=4x-48 | | (-45+y)*7=-5 | | 6(2-3u)=48 | | 4(-2x-3)=-12 | | 6x+12=2/3(6x=6) | | 22x^2+748x+7392=0 | | −x=9(x−10) | | -4=x/4+6 | | 22s^2+748s+7392=0 | | 3(2x+4=-12 | | 14c-12c=12 | | 9^0.4x=5 | | 4x-34/3=3x | | 8(5-12a)=-152 | | 5(5x+10)=425 |

Equations solver categories