-7(x-4)2x=-2(x-5)

Simple and best practice solution for -7(x-4)2x=-2(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7(x-4)2x=-2(x-5) equation:



-7(x-4)2x=-2(x-5)
We move all terms to the left:
-7(x-4)2x-(-2(x-5))=0
We multiply parentheses
-14x^2+56x-(-2(x-5))=0
We calculate terms in parentheses: -(-2(x-5)), so:
-2(x-5)
We multiply parentheses
-2x+10
Back to the equation:
-(-2x+10)
We get rid of parentheses
-14x^2+56x+2x-10=0
We add all the numbers together, and all the variables
-14x^2+58x-10=0
a = -14; b = 58; c = -10;
Δ = b2-4ac
Δ = 582-4·(-14)·(-10)
Δ = 2804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2804}=\sqrt{4*701}=\sqrt{4}*\sqrt{701}=2\sqrt{701}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{701}}{2*-14}=\frac{-58-2\sqrt{701}}{-28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{701}}{2*-14}=\frac{-58+2\sqrt{701}}{-28} $

See similar equations:

| (5x+2)=(10x-3)=(7x-11)=(8x-19)=(13x-31) | | v-10=-5 | | -5b-34=6-5(8+b) | | 5x-14=-8 | | 15x+11=180 | | 9*a+12=22 | | 8b-5b-2b=8 | | 8x+8+90+9x-3=180 | | 40+4v=9v | | 2x+5x+4=x | | 1/2(4x-16)=-3x+5 | | -4r-4=-18-9r-9r | | 5x+23=-7-10x | | (10b-5)-3(3b+4)=-6 | | 200-20x=500 | | 7(x+1)+4(2x-3)=40 | | 20.5=25.5-20+b | | 1.8x+x=2,800,000 | | 12(x-3)=-12+10x | | 3j+-29=61 | | -7(6h+9)=33 | | 6(2x+1)=5x-1 | | 60=3+2s | | .01x+0.10(2x)+0.25(2x+13)=31.65 | | 17h−2h+3h−16h=14 | | 3n+12+4n+12=180 | | x-2=-2+3x | | 5a+2=6−7a | | 2u−9=–1 | | 2x/6-5/6=5/12 | | h+1/3=5/4 | | -4(y-2)=8 |

Equations solver categories