-7/20x+2/5=1/4x

Simple and best practice solution for -7/20x+2/5=1/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/20x+2/5=1/4x equation:



-7/20x+2/5=1/4x
We move all terms to the left:
-7/20x+2/5-(1/4x)=0
Domain of the equation: 20x!=0
x!=0/20
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-7/20x-(+1/4x)+2/5=0
We get rid of parentheses
-7/20x-1/4x+2/5=0
We calculate fractions
640x^2/2000x^2+(-700x)/2000x^2+(-500x)/2000x^2=0
We multiply all the terms by the denominator
640x^2+(-700x)+(-500x)=0
We get rid of parentheses
640x^2-700x-500x=0
We add all the numbers together, and all the variables
640x^2-1200x=0
a = 640; b = -1200; c = 0;
Δ = b2-4ac
Δ = -12002-4·640·0
Δ = 1440000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1440000}=1200$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1200)-1200}{2*640}=\frac{0}{1280} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1200)+1200}{2*640}=\frac{2400}{1280} =1+7/8 $

See similar equations:

| 113-y=174 | | 13x-25=118 | | 2(6-x)/3=8 | | 500x-0.15=300x+0.45 | | 225=-v+26 | | 4.1x-94=1.9x+5 | | 259-y=109 | | 223=136-w | | 0.0+0.6x=1.4 | | 79=-x+202 | | .45x-50=400 | | 5.3=10x+7.6 | | 4.1x+4-2.1x=2 | | 1/2+y=-5/6 | | 10a-a^2-16=0 | | 360x-12x^2=0 | | 16x+12=8x47 | | 2x+10=10.5 | | 4x-24.3=x | | 3÷5x+1÷2=7÷6 | | 10u+20=1+11u | | -3(8n-2)=-114 | | 16m+8=4m+12 | | 4(x+1)/4=10 | | 8x^2-3x+135=0 | | -53=8v | | 2x+x=4.13 | | 5x2-7x-90=0 | | 5x+15=5x25 | | 1/4=8/4x-1/8 | | (√​3x​2)+12x+13=2x+5 | | -7=24h-3 |

Equations solver categories