If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/2k-2/5=3-4/7k
We move all terms to the left:
-7/2k-2/5-(3-4/7k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-7/2k-(-4/7k+3)-2/5=0
We get rid of parentheses
-7/2k+4/7k-3-2/5=0
We calculate fractions
(-196k^2)/350k^2+(-1225k)/350k^2+200k/350k^2-3=0
We multiply all the terms by the denominator
(-196k^2)+(-1225k)+200k-3*350k^2=0
We add all the numbers together, and all the variables
(-196k^2)+200k+(-1225k)-3*350k^2=0
Wy multiply elements
(-196k^2)-1050k^2+200k+(-1225k)=0
We get rid of parentheses
-196k^2-1050k^2+200k-1225k=0
We add all the numbers together, and all the variables
-1246k^2-1025k=0
a = -1246; b = -1025; c = 0;
Δ = b2-4ac
Δ = -10252-4·(-1246)·0
Δ = 1050625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1050625}=1025$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1025)-1025}{2*-1246}=\frac{0}{-2492} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1025)+1025}{2*-1246}=\frac{2050}{-2492} =-1025/1246 $
| v=-1/39v-2=3v | | 4x^2+6x-127=0 | | 9k+7(45-62)=467 | | 8y+4•=-8 | | 4(x-5)=8x+28 | | 2x+8=8x-2 | | X+5(x+2)=-244 | | 9(45-k)+7k=467 | | 9k+7(45-k)=467 | | X-(-74)=(-j) | | 7q+9=11q-31 | | 15=-33+x | | -15+6x-0.2x^2=0 | | -19=8x+3 | | 5+n=7 | | (12)^2-(x+1)^2=(2x)^2-(x+4) | | d1/12=4.8 | | 10a/9=9/4 | | 4x^2+6x=127 | | 12w-6w^2=0 | | 5y+8=-20-3y | | 31.2x+15.6x^2=5.2 | | 31.2x+15.6x=5.2 | | 1/2x+4.5=8 | | 19+19+2x+4=180,x | | 4(-2)+12x=-36 | | 4y+12(-5)=-36 | | 6x+12-9=117 | | 4y+12(-2)=-36 | | 1/3u-1/2=-1/5 | | 14p−9p=20 | | 5×2+2(3x-1)=55 |