-7/2u+5/4=-3/8u=1/4

Simple and best practice solution for -7/2u+5/4=-3/8u=1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/2u+5/4=-3/8u=1/4 equation:



-7/2u+5/4=-3/8u=1/4
We move all terms to the left:
-7/2u+5/4-(-3/8u)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 8u)!=0
u!=0/1
u!=0
u∈R
We get rid of parentheses
-7/2u+3/8u+5/4=0
We calculate fractions
640u^2/256u^2+(-896u)/256u^2+96u/256u^2=0
We multiply all the terms by the denominator
640u^2+(-896u)+96u=0
We add all the numbers together, and all the variables
640u^2+96u+(-896u)=0
We get rid of parentheses
640u^2+96u-896u=0
We add all the numbers together, and all the variables
640u^2-800u=0
a = 640; b = -800; c = 0;
Δ = b2-4ac
Δ = -8002-4·640·0
Δ = 640000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{640000}=800$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-800)-800}{2*640}=\frac{0}{1280} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-800)+800}{2*640}=\frac{1600}{1280} =1+1/4 $

See similar equations:

| 100-50=5m | | 3(x+4)=7x−4x+5 | | 1+5p-5=-8+3p | | (7x-2)=(-5x+75) | | (x+6)−(x+6)= | | g+2-3g+4+5g=10g-9-7g+15 | | 2.1=1.6+m | | 70=350x(0.04) | | 8x-30=7x-24 | | 4/9n-8-1/7n=7 | | Y=-1/2x+18.5 | | 8x-19+13x-31=180 | | 7/1792=5/x | | -15m=30 | | Y=-1/2x+18 | | F(x)=(0.3)x | | -2a+5a=-2+6a-4a | | k−21/2=11/4 | | 17-x=1/3x15x6 | | 7x-11+13x-31=180 | | d-0.52;d=0.51 | | 9t+14=-9t+18 | | 5.6=1.4w | | 2560=c÷6 | | 25a+50=175 | | x/2-10=200 | | -36y=1 | | 2•7x=17x-18 | | M=20d+100 | | 18-x/24=15/8 | | -10x-20=45-7x | | -1+2b=b+7 |

Equations solver categories