-7/2v-7/2=3/5v-2

Simple and best practice solution for -7/2v-7/2=3/5v-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/2v-7/2=3/5v-2 equation:



-7/2v-7/2=3/5v-2
We move all terms to the left:
-7/2v-7/2-(3/5v-2)=0
Domain of the equation: 2v!=0
v!=0/2
v!=0
v∈R
Domain of the equation: 5v-2)!=0
v∈R
We get rid of parentheses
-7/2v-3/5v+2-7/2=0
We calculate fractions
(-35v)/40v^2+(-24v)/40v^2+(-35v)/40v^2+2=0
We multiply all the terms by the denominator
(-35v)+(-24v)+(-35v)+2*40v^2=0
Wy multiply elements
80v^2+(-35v)+(-24v)+(-35v)=0
We get rid of parentheses
80v^2-35v-24v-35v=0
We add all the numbers together, and all the variables
80v^2-94v=0
a = 80; b = -94; c = 0;
Δ = b2-4ac
Δ = -942-4·80·0
Δ = 8836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8836}=94$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-94)-94}{2*80}=\frac{0}{160} =0 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-94)+94}{2*80}=\frac{188}{160} =1+7/40 $

See similar equations:

| 6x,x=5 | | 7x+3x+4=-24 | | 5{5x}=3x+2x+100,x | | 1x-10=3 | | 18x-7=7x+12 | | 8(4x+8)=22-(x+13) | | (u^2-3u+2)/(2u^2+14u+16)=0 | | y-1/4=-12 | | 9/8m−1/6m=−4−113. | | v=59,092-59,092*0.15*2.75 | | 1000​(7x​-10)=50​(​308+100x) | | 1/2(10x+4)-3x=10 | | -4x+8x-6=4(x-4)-2 | | (3x+21)^2+9x^2-1521=0 | | 15/(2g-7)=3/5 | | 2/3z+6=−12 | | (6x)3-16=6 | | 3b-2(b+1)-b=9(b-1)-9b | | 20x+1=14x-1 | | 5{5x}=3x+2x+100 | | 0.6x-2,7=0.3 | | 9-4(2-m)=21 | | 9x-39+18=756 | | 2x4+8x²=0 | | (4x+10)2-4=22 | | 2x+7+38=4x | | 12^y-5=4 | | -4/3(3/2x+1/2)=4/3x-9 | | 9x-11-(7x-10)=x+3 | | 9x−2=4x+13 | | 2x+1=273 | | 6b-5(b+1)-b=9(b-1)-9b |

Equations solver categories