-7/3y-7/4=3/4y-1

Simple and best practice solution for -7/3y-7/4=3/4y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/3y-7/4=3/4y-1 equation:



-7/3y-7/4=3/4y-1
We move all terms to the left:
-7/3y-7/4-(3/4y-1)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 4y-1)!=0
y∈R
We get rid of parentheses
-7/3y-3/4y+1-7/4=0
We calculate fractions
(-448y)/192y^2+(-9y)/192y^2+(-21y)/192y^2+1=0
We multiply all the terms by the denominator
(-448y)+(-9y)+(-21y)+1*192y^2=0
Wy multiply elements
192y^2+(-448y)+(-9y)+(-21y)=0
We get rid of parentheses
192y^2-448y-9y-21y=0
We add all the numbers together, and all the variables
192y^2-478y=0
a = 192; b = -478; c = 0;
Δ = b2-4ac
Δ = -4782-4·192·0
Δ = 228484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{228484}=478$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-478)-478}{2*192}=\frac{0}{384} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-478)+478}{2*192}=\frac{956}{384} =2+47/96 $

See similar equations:

| 8(2x-7)=88 | | n–2=15.4 | | 4(2x-8)=(1)/(4)(8x+48)+(1)/(2)x | | -7x=-196 | | x9-18=-32 | | 5n=2(5)* | | x+25-12+6=68 | | 6(5n–4)=36. | | 13^x=2197 | | 5(k+2)=-55 | | 1/3(x-2)=2/3x+4 | | 7-6a+8=-9-3a | | -2v-1=1-2v | | (.333333x)+x=40.00 | | 18a+9+5=19 | | 5r-7=-3r+6+8r-13 | | x.5x-14=21 | | .3333x=40 | | 3(x+8)+2x=2(6+4x) | | x.3x+7=13 | | 3+p=p+3+7 | | 256(3x)=384(5x) | | 2x–50=20–5x | | -9+v+6+v=3v-3-v | | 3.2h+8=5.7h | | 4x-2x+6=-8 | | (10x-19)=(3x+2)=(5x-3) | | 60/7=n | | 90=2x(x-9) | | 21x-12=-33 | | 16c^2-14c+3=0 | | 2=–2(z+–10) |

Equations solver categories