-7/8k+2=1-3/4k

Simple and best practice solution for -7/8k+2=1-3/4k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/8k+2=1-3/4k equation:



-7/8k+2=1-3/4k
We move all terms to the left:
-7/8k+2-(1-3/4k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 4k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-7/8k-(-3/4k+1)+2=0
We get rid of parentheses
-7/8k+3/4k-1+2=0
We calculate fractions
(-28k)/32k^2+24k/32k^2-1+2=0
We add all the numbers together, and all the variables
(-28k)/32k^2+24k/32k^2+1=0
We multiply all the terms by the denominator
(-28k)+24k+1*32k^2=0
We add all the numbers together, and all the variables
24k+(-28k)+1*32k^2=0
Wy multiply elements
32k^2+24k+(-28k)=0
We get rid of parentheses
32k^2+24k-28k=0
We add all the numbers together, and all the variables
32k^2-4k=0
a = 32; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·32·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*32}=\frac{0}{64} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*32}=\frac{8}{64} =1/8 $

See similar equations:

| 2x+270=2430 | | 18=3(y-4)+3y | | -69a=204 | | x-7/7=x=1/3=8/7 | | 2x/5=4/9 | | 35-2x=70 | | 15/x+6=5/6 | | 3(x)+8=14 | | |2r+5|=3r | | 12(x-1)+10(1-x)=14(-x+3) | | 4t-3(1-3t)=-3 | | 24x-80=64/x | | 4y+-3=-7 | | 1+2n=27 | | 15-1(2k-4)=5(2k+3) | | 8x^2-3=5x | | x^2+11(x)=82 | | -5(4x+5)=-185 | | 9-2|x-3|=2 | | x+2/4=6 | | 2/3y-1/2=1/5y | | 12p-4=9p^2 | | 30=3(x-2) | | 24x-80=64÷x | | 54=2.9x | | 3y-2+1y=9 | | 1/3n-3/4=3/5 | | -6+10x=8 | | 2/3+n=3/4 | | 3(k-2)=-18 | | 10+x+10=8x | | 7x+22=50 |

Equations solver categories