If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/8x-9/40+1/5x=-72
We move all terms to the left:
-7/8x-9/40+1/5x-(-72)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-7/8x+1/5x+72-9/40=0
We calculate fractions
(-1800x^2)/6400x^2+(-5600x)/6400x^2+1280x/6400x^2+72=0
We multiply all the terms by the denominator
(-1800x^2)+(-5600x)+1280x+72*6400x^2=0
We add all the numbers together, and all the variables
(-1800x^2)+1280x+(-5600x)+72*6400x^2=0
Wy multiply elements
(-1800x^2)+460800x^2+1280x+(-5600x)=0
We get rid of parentheses
-1800x^2+460800x^2+1280x-5600x=0
We add all the numbers together, and all the variables
459000x^2-4320x=0
a = 459000; b = -4320; c = 0;
Δ = b2-4ac
Δ = -43202-4·459000·0
Δ = 18662400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18662400}=4320$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4320)-4320}{2*459000}=\frac{0}{918000} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4320)+4320}{2*459000}=\frac{8640}{918000} =4/425 $
| -5j=8j-9 | | 19x+88=19x+48 | | 4(x-8)+5x=2(5x+4) | | 2x-3=5(x+4)+2 | | 3x+21x-8=6(4x+4) | | 3x-24=(-6) | | 16x=20x-6 | | -6-5f=-4f | | 6x+15=696x=69x=14 | | X^2+4x+3x-2=42 | | -8+5q=7q | | 2x=10x/3 | | 10(d)-3(d)=119 | | 5(2-8y)=35 | | x=6-5=8-2 | | 10x-4.9x^2=45 | | 8g+6=7g | | 10x*4.9x^2=45 | | 2/7x+1/5x=34 | | -4(y-3)=-8 | | 14p=1.5 | | 2.75(16n+3)=24n | | -0.57x+0.27x=9.6 | | 1/4x3/9=+5 | | -1(7x+6)+2(x-4)=3x-6+1+x | | q=6+24 | | 40-3=4m+14 | | -4+2r=-2r | | 250t+90t=9060 | | 10=x/2.56+8 | | 1x-100+1x=12 | | 6a^2-17a+5=0 |