If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/8x-9/40x+1/5=-72
We move all terms to the left:
-7/8x-9/40x+1/5-(-72)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 40x!=0We add all the numbers together, and all the variables
x!=0/40
x!=0
x∈R
-7/8x-9/40x+72+1/5=0
We calculate fractions
1280x^2/8000x^2+(-7000x)/8000x^2+(-1800x)/8000x^2+72=0
We multiply all the terms by the denominator
1280x^2+(-7000x)+(-1800x)+72*8000x^2=0
Wy multiply elements
1280x^2+576000x^2+(-7000x)+(-1800x)=0
We get rid of parentheses
1280x^2+576000x^2-7000x-1800x=0
We add all the numbers together, and all the variables
577280x^2-8800x=0
a = 577280; b = -8800; c = 0;
Δ = b2-4ac
Δ = -88002-4·577280·0
Δ = 77440000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{77440000}=8800$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8800)-8800}{2*577280}=\frac{0}{1154560} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8800)+8800}{2*577280}=\frac{17600}{1154560} =5/328 $
| 168^2+374^2=c^2 | | 391^2+120^2=c^2 | | 4x-(8-x)=x-4 | | 4x-(8-x)=x-4 | | x+81=x | | 64+90=x+8 | | 11a=-12 | | 18-0.8x=2 | | 3y-11=5y+7 | | 24/28=n/23 | | z2+20z+64=0 | | (3x+14)=(3x+14)=142+2x+2x | | 10*x+4=164 | | 2/3(4x+10)=8 | | 8(4a-4)-1=14-8a(a=47/40) | | 10m^2-45m+45=0 | | 11x+-29=180 | | -20x+40=2(14-6x)+5x | | 4(-2)2+8(-2)+3(-2)+6=x | | 0.05n+0.15=0.4 | | (m/4)+3=-1 | | 5.5(6-x)+27=100-2.5(3x+20) | | 10x-17=700 | | 50/25x=20 | | 5x=143 | | -2(w+5)=-7w-40 | | 9y+15=-4(y+6) | | 9x+13=144 | | 121=-y+282 | | 244=-v+169 | | 151-v=246 | | -3(y+1)+7=4(y+1)=-7 |