If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7/9p+1/2p+2/9p=-1/8
We move all terms to the left:
-7/9p+1/2p+2/9p-(-1/8)=0
Domain of the equation: 9p!=0
p!=0/9
p!=0
p∈R
Domain of the equation: 2p!=0We get rid of parentheses
p!=0/2
p!=0
p∈R
-7/9p+1/2p+2/9p+1/8=0
We calculate fractions
36p^2/1152p^2+(256p-7)/1152p^2+576p/1152p^2=0
We multiply all the terms by the denominator
36p^2+(256p-7)+576p=0
We add all the numbers together, and all the variables
36p^2+576p+(256p-7)=0
We get rid of parentheses
36p^2+576p+256p-7=0
We add all the numbers together, and all the variables
36p^2+832p-7=0
a = 36; b = 832; c = -7;
Δ = b2-4ac
Δ = 8322-4·36·(-7)
Δ = 693232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{693232}=\sqrt{16*43327}=\sqrt{16}*\sqrt{43327}=4\sqrt{43327}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(832)-4\sqrt{43327}}{2*36}=\frac{-832-4\sqrt{43327}}{72} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(832)+4\sqrt{43327}}{2*36}=\frac{-832+4\sqrt{43327}}{72} $
| 46=-3x+52 | | 2x+70=140 | | 5(p-1)=-(6-4p) | | 3u+5=4u-2 | | 9+3(2w-3)=-3(6w-5)6w | | -2x-5=-2+6x | | (6)(9)(r+8)=r | | 3/4=3/2x+4 | | F(x)=3x^2-36-6 | | 5(8x+9)=40x-7 | | 7x-18=-5x+18 | | 3^3x-4=27 | | 8(3m+4)-2(4m-8)=4(3m+2) | | -6(2x-3)=-2(8x-1( | | 381=1/2(9.8)t^2 | | 6x^-19+10=0 | | 8(3m+4)-2(4m-8)=4(3m+2 | | 19/4x+2/7=11/4x | | 5x+14-7=22 | | 3(2w-9=15 | | 7x-18=-5x=18 | | 8x-2x-4=3 | | 10x2+21x+9=0 | | 2(6t-3)+4(5t+6)=146 | | 1/3x=7.06 | | -6-10=18+x | | 5(x+4)=4x+1 | | 5a-1/5=5 | | 9(4z-3)-5(7z+8)=-68 | | 6p+1=-17 | | 5-2(3c+6)=2c+17+4c | | -3=6x+5x+7 |