-7k-4k=8-2k/8k

Simple and best practice solution for -7k-4k=8-2k/8k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7k-4k=8-2k/8k equation:



-7k-4k=8-2k/8k
We move all terms to the left:
-7k-4k-(8-2k/8k)=0
Domain of the equation: 8k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-7k-4k-(-2k/8k+8)=0
We add all the numbers together, and all the variables
-11k-(-2k/8k+8)=0
We get rid of parentheses
-11k+2k/8k-8=0
We multiply all the terms by the denominator
-11k*8k+2k-8*8k=0
We add all the numbers together, and all the variables
2k-11k*8k-8*8k=0
Wy multiply elements
-88k^2+2k-64k=0
We add all the numbers together, and all the variables
-88k^2-62k=0
a = -88; b = -62; c = 0;
Δ = b2-4ac
Δ = -622-4·(-88)·0
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3844}=62$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-62}{2*-88}=\frac{0}{-176} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+62}{2*-88}=\frac{124}{-176} =-31/44 $

See similar equations:

| 1/4n-6=3 | | 17u-u+2u-11u=7 | | 3x-8+9-2x=x+3 | | 11=m•50 | | 3(-0.25+-0.75y)-6y=2 | | 5v^2-6v=-6 | | C=20+25x | | x+2=31-11 | | 7c+c=17 | | 6-3=y+2 | | 1/9r=10 | | 3/8r=10 | | 1/9r=40 | | 1/9r=20 | | 8x-16-0x=32 | | 9n-10=3n-18 | | 2x-4(-4x-2)=-118 | | 6/8x=6 | | 5x+3-2x-5-x=-21 | | x*12+24=36 | | 2(n+5)=2£ | | 26/8x=6 | | 5(m+2)=9m-7m+8 | | -12(k+4)=62 | | 79.90+45.99+14.99w=170.86 | | 3(r-2)=16 | | 2x-9=3x-30 | | -3(5x+8+4x-12=-80 | | 16x-52=12 | | 2x-9+3x-30=180 | | -7n-19=-5(n+1) | | 12p=p+14=p |

Equations solver categories