-7v(v+3)+4v+5=7v+9

Simple and best practice solution for -7v(v+3)+4v+5=7v+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7v(v+3)+4v+5=7v+9 equation:


Simplifying
-7v(v + 3) + 4v + 5 = 7v + 9

Reorder the terms:
-7v(3 + v) + 4v + 5 = 7v + 9
(3 * -7v + v * -7v) + 4v + 5 = 7v + 9
(-21v + -7v2) + 4v + 5 = 7v + 9

Reorder the terms:
5 + -21v + 4v + -7v2 = 7v + 9

Combine like terms: -21v + 4v = -17v
5 + -17v + -7v2 = 7v + 9

Reorder the terms:
5 + -17v + -7v2 = 9 + 7v

Solving
5 + -17v + -7v2 = 9 + 7v

Solving for variable 'v'.

Reorder the terms:
5 + -9 + -17v + -7v + -7v2 = 9 + 7v + -9 + -7v

Combine like terms: 5 + -9 = -4
-4 + -17v + -7v + -7v2 = 9 + 7v + -9 + -7v

Combine like terms: -17v + -7v = -24v
-4 + -24v + -7v2 = 9 + 7v + -9 + -7v

Reorder the terms:
-4 + -24v + -7v2 = 9 + -9 + 7v + -7v

Combine like terms: 9 + -9 = 0
-4 + -24v + -7v2 = 0 + 7v + -7v
-4 + -24v + -7v2 = 7v + -7v

Combine like terms: 7v + -7v = 0
-4 + -24v + -7v2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(4 + 24v + 7v2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(4 + 24v + 7v2)' equal to zero and attempt to solve: Simplifying 4 + 24v + 7v2 = 0 Solving 4 + 24v + 7v2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.5714285714 + 3.428571429v + v2 = 0 Move the constant term to the right: Add '-0.5714285714' to each side of the equation. 0.5714285714 + 3.428571429v + -0.5714285714 + v2 = 0 + -0.5714285714 Reorder the terms: 0.5714285714 + -0.5714285714 + 3.428571429v + v2 = 0 + -0.5714285714 Combine like terms: 0.5714285714 + -0.5714285714 = 0.0000000000 0.0000000000 + 3.428571429v + v2 = 0 + -0.5714285714 3.428571429v + v2 = 0 + -0.5714285714 Combine like terms: 0 + -0.5714285714 = -0.5714285714 3.428571429v + v2 = -0.5714285714 The v term is 3.428571429v. Take half its coefficient (1.714285715). Square it (2.938775513) and add it to both sides. Add '2.938775513' to each side of the equation. 3.428571429v + 2.938775513 + v2 = -0.5714285714 + 2.938775513 Reorder the terms: 2.938775513 + 3.428571429v + v2 = -0.5714285714 + 2.938775513 Combine like terms: -0.5714285714 + 2.938775513 = 2.3673469416 2.938775513 + 3.428571429v + v2 = 2.3673469416 Factor a perfect square on the left side: (v + 1.714285715)(v + 1.714285715) = 2.3673469416 Calculate the square root of the right side: 1.538618517 Break this problem into two subproblems by setting (v + 1.714285715) equal to 1.538618517 and -1.538618517.

Subproblem 1

v + 1.714285715 = 1.538618517 Simplifying v + 1.714285715 = 1.538618517 Reorder the terms: 1.714285715 + v = 1.538618517 Solving 1.714285715 + v = 1.538618517 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.714285715' to each side of the equation. 1.714285715 + -1.714285715 + v = 1.538618517 + -1.714285715 Combine like terms: 1.714285715 + -1.714285715 = 0.000000000 0.000000000 + v = 1.538618517 + -1.714285715 v = 1.538618517 + -1.714285715 Combine like terms: 1.538618517 + -1.714285715 = -0.175667198 v = -0.175667198 Simplifying v = -0.175667198

Subproblem 2

v + 1.714285715 = -1.538618517 Simplifying v + 1.714285715 = -1.538618517 Reorder the terms: 1.714285715 + v = -1.538618517 Solving 1.714285715 + v = -1.538618517 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.714285715' to each side of the equation. 1.714285715 + -1.714285715 + v = -1.538618517 + -1.714285715 Combine like terms: 1.714285715 + -1.714285715 = 0.000000000 0.000000000 + v = -1.538618517 + -1.714285715 v = -1.538618517 + -1.714285715 Combine like terms: -1.538618517 + -1.714285715 = -3.252904232 v = -3.252904232 Simplifying v = -3.252904232

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.175667198, -3.252904232}

Solution

v = {-0.175667198, -3.252904232}

See similar equations:

| -2(x-1)+4x=5x+3 | | 1-.5(-x+5)=2+3(1-x) | | 0=5-2[3-4x] | | y=5-2[3-4x] | | 6y-5x=4x+4 | | 5x-5-3x+10=2x-1 | | 6x+1-3(x+1)=9x+3 | | 0=11+-8x | | 16y^2+24xy+9x^2=0 | | 12(v+4)-4v=2(4v+2)-6 | | m^2=8m+20 | | 0=5-2[3+4x] | | 22+(-19)= | | 5z^3+9z^2-2z=0 | | y=5-2[3+4x] | | 5z^3+9x^2-2z=0 | | 4y^2=xy-6y | | 5x-8=2(2x+5)-2 | | (a/2y^6)^5 | | 8i(7-i)= | | 6h+6k-6(6h-2k)= | | 2x+7-5(x+1)=4x+5 | | s^2=11s+11 | | s^2+12s+12=0 | | (2-8i)+(2+6i)= | | 26t-8=11t+7 | | -3/2=-3/5y5/3 | | S=2SQ+2SR | | -.08=0.13x-0.21x | | 8(5n-1)+9=5(8n+5) | | P=2SQ+2SR | | 5x+9=11x+15 |

Equations solver categories