If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+448=0
a = -7; b = 0; c = +448;
Δ = b2-4ac
Δ = 02-4·(-7)·448
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*-7}=\frac{-112}{-14} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*-7}=\frac{112}{-14} =-8 $
| 1.75=2x-2.5÷10 | | X-23+x+(x/4)=562 | | 0.27x-140=32x-200 | | 2+3.50x=5x3.25X | | 5a-2=8a+7 | | -3x+5=-5x+2 | | (3/4x)+1/2=2 | | 18r-13r-5r+5r=15 | | 3(u-6)-6u=-12 | | 3(2x+6)=-45+33 | | 4n-34=2n | | -59-8x=7x+16- | | 12x-88=7x+12 | | p-5/3=3 | | -5x2+242=0 | | -(1/2u-12)+4=5/u-6 | | x^2+11x-18=1 | | 16w-2w+2w-16w+2w=12 | | 4x+3•2=102 | | 4x-5°=3x+2° | | 4x(x-4)=35 | | x^2+11x-19=1 | | x(5)+(x+150)(3)=4730 | | 3(2x+6)=12x+13-6x+5 | | 3(2x+8)=-8+26 | | 169x+25x=8 | | 2w+6w-3=428 | | Z=-13-8i | | -4-x=6(5+6x)-3x | | 4x+3x2=102 | | 10=3p+5 | | 4*(2*9)=(4*n)*9 |