If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+63=0
a = -7; b = 0; c = +63;
Δ = b2-4ac
Δ = 02-4·(-7)·63
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*-7}=\frac{-42}{-14} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*-7}=\frac{42}{-14} =-3 $
| 2x+22=4x-6 | | (x^2)-695.1x+92239.77=0 | | 14-9x^2=-16-4x^2 | | x+1=2x-14 | | 1/2x-1=x | | 4n-6=23 | | 0.70x=0.32(7)=0.50(21) | | 4(x-1^2=6x+2 | | 5x+10=4x-24 | | 5x+10=4(x-6) | | 6+x=18+x/3 | | y/8+5=4 | | y/7+5=3 | | 6+25x=15×+8 | | 3q-2=9-8q | | 2x-2.2=3.5 | | r^2-10r+50=0 | | (x-2)*(12x^2+16x-3)=0 | | 21-3p=4p | | 2x+37=9x-36 | | 20(1+x)^2=0 | | 4x-(x²-4)=2x-4 | | 9764.50(x+1)^3=120000 | | 2b-3=8b+15 | | 10x-2(x+3)=21 | | 9764,50(1+x)^3/12=10000 | | X/2+x/3=7/6+x/4 | | 7a=3a+36 | | (1+x)^3/12=10 | | -0.04x=1.40 | | X-7y+3=0 | | 14x2+53x+14=0 |