If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+6x+10=0
a = -7; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-7)·10
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{79}}{2*-7}=\frac{-6-2\sqrt{79}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{79}}{2*-7}=\frac{-6+2\sqrt{79}}{-14} $
| 4p+42=10p+12 | | 2x+8x-9x=0 | | (-2x-5)(x)=64 | | 2-3x=4-11x | | 2y/8=4-1/12 | | 4x+3=7-8x | | 1.5a+8.75=13.25 | | -10x-76=50-x | | y=6E-05X+0.568 | | 3x=800+x | | 6z-3=z+3 | | 3=8/(w-3) | | -0.4(x-3.8=-2 | | (5x-7)(9-x)=0 | | 2^x+4=20 | | x^2+x^2=6.4807406984 | | 3(2^x+4)=350 | | -z-5=5 | | 18-8m=-5(5m+3)-3m | | 10-2x=4x+6 | | X=2y+(y-8) | | X=2y^2-8 | | 2/3(x+1)=16 | | (5x-7)(9-x)=0= | | X=2y(y-8) | | 3=0.06x | | y/2+2=13 | | (X+5)+y=90 | | 2/3(2n-7)=-2 | | 2x+7/11=3 | | 18y+74=30y-34 | | -48=-v/7 |