-7z+12=20z+8-1/2z

Simple and best practice solution for -7z+12=20z+8-1/2z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7z+12=20z+8-1/2z equation:



-7z+12=20z+8-1/2z
We move all terms to the left:
-7z+12-(20z+8-1/2z)=0
Domain of the equation: 2z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
-7z-(20z-1/2z+8)+12=0
We get rid of parentheses
-7z-20z+1/2z-8+12=0
We multiply all the terms by the denominator
-7z*2z-20z*2z-8*2z+12*2z+1=0
Wy multiply elements
-14z^2-40z^2-16z+24z+1=0
We add all the numbers together, and all the variables
-54z^2+8z+1=0
a = -54; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·(-54)·1
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{70}}{2*-54}=\frac{-8-2\sqrt{70}}{-108} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{70}}{2*-54}=\frac{-8+2\sqrt{70}}{-108} $

See similar equations:

| 16q-16q+2q+2q+1=9 | | -8(x+8)+8=-56 | | 6x+2x+8)=180 | | x–20=0.9x | | -7b+19b=12 | | 1/4x+14=5 | | 4x+8+4x-8=116 | | y=2(4-1) | | 2x+4=10+1 | | 0.25x-3=5-2x | | 6j6j6j6j6j6j6j6j6j6j6j6j6j6+4=7 | | 5x-13+2x-16=28 | | ((c)/(−9))+6=14 | | 3x+7–9x=2x-1 | | 2x(x-3)=4-x | | 17x-12=90 | | −4(x+5)=5(x−4) | | 5x-19=6x+1 | | 5+x/9=x/3-3 | | 2(x-2)+4(4x-1)=0 | | 62=6y-80 | | 2.3x+1.6x-3.45=0.7x | | -41-(-6)=x/9 | | -14x-34=11x+29 | | z–6=3 | | 8x+13=-7(-8x+5 | | 3y+5+52=90 | | 2x-(5x-7)=46 | | 6(x−6)+4=−32+6x | | 6y-80=62 | | -11+8x=23+6x | | 3d+60=150 |

Equations solver categories