-8+2/3x+19=2x-5-x

Simple and best practice solution for -8+2/3x+19=2x-5-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8+2/3x+19=2x-5-x equation:



-8+2/3x+19=2x-5-x
We move all terms to the left:
-8+2/3x+19-(2x-5-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(x-5)-8+19=0
We add all the numbers together, and all the variables
2/3x-(x-5)+11=0
We get rid of parentheses
2/3x-x+5+11=0
We multiply all the terms by the denominator
-x*3x+5*3x+11*3x+2=0
Wy multiply elements
-3x^2+15x+33x+2=0
We add all the numbers together, and all the variables
-3x^2+48x+2=0
a = -3; b = 48; c = +2;
Δ = b2-4ac
Δ = 482-4·(-3)·2
Δ = 2328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2328}=\sqrt{4*582}=\sqrt{4}*\sqrt{582}=2\sqrt{582}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-2\sqrt{582}}{2*-3}=\frac{-48-2\sqrt{582}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+2\sqrt{582}}{2*-3}=\frac{-48+2\sqrt{582}}{-6} $

See similar equations:

| 6v+2(v-3)=26 | | 2/5+5y=6y-2/15 | | 12=2-r | | 4x+1=13+x | | 6x-1/x^2+5x+4=19/x+1 | | n/3=-1/3 | | 3.3w=8.63 | | 30+10x-10=12x | | 11+2x=2(-x+7)-23 | | 3/4x+3/2x=9/8 | | 4=n/17 | | 3(x+8)+8x=-9 | | .25x+.25x=7 | | 5+2x=X+8 | | 6(x+2=48 | | u/5-11=21 | | 5-1/2=5/8y+2 | | 43.73=21+.99x | | 5+5c=29 | | 144=58+x | | 4(x)-9=7(x)+12 | | x/7+3/7=-6/7 | | 43.73=1.29x | | 2(2x+4)=-(3x-2) | | -26=2u+4(u-5) | | -32=n-20 | | n-11=-1 | | 0.3x+-2(1.6x)-8=3(1.9x-4.1) | | 23=8-b | | 3x=1x+4 | | 4x-7+8x-40=49 | | -11=r+-1 |

Equations solver categories