-8+2/3x+4=2x-5x-x

Simple and best practice solution for -8+2/3x+4=2x-5x-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8+2/3x+4=2x-5x-x equation:



-8+2/3x+4=2x-5x-x
We move all terms to the left:
-8+2/3x+4-(2x-5x-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(-4x)-8+4=0
We add all the numbers together, and all the variables
2/3x-(-4x)-4=0
We get rid of parentheses
2/3x+4x-4=0
We multiply all the terms by the denominator
4x*3x-4*3x+2=0
Wy multiply elements
12x^2-12x+2=0
a = 12; b = -12; c = +2;
Δ = b2-4ac
Δ = -122-4·12·2
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3}}{2*12}=\frac{12-4\sqrt{3}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3}}{2*12}=\frac{12+4\sqrt{3}}{24} $

See similar equations:

| -u/4=-41 | | X-2=-4+x+5-3 | | 3(2x+4)-4x=36 | | 5(2x-3)-2=5(x-4)+43 | | -10-7m=6-5(-8+3m) | | -8+1/3=-1x | | 2(7b+6)=82 | | w+6=99 | | 132+24x28=5 | | 4x-22=2x+21 | | .13x+x=31112 | | 264=209-v | | q=53−38 | | 36+59=s | | 3+6(-8+4x)=-189 | | -m+16=-12m+14m−14 | | x^2+18x-31=0 | | z=70−9 | | 2p−p=14 | | 37+4u=9 | | s=5(19) | | 4x-(x+6)=5x-15 | | x+13=-3x–1 | | u=64+18 | | 5−5c=-5c+4 | | -z+9=-8z+2 | | 25x-15x=x-18 | | 6(n-1)=2(n+ | | 6-7(7x+4)=-120 | | r4=5 | | x(2x+6)=6 | | 4x-27=3x+37 |

Equations solver categories