-8/15x-11=4/9x+17

Simple and best practice solution for -8/15x-11=4/9x+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -8/15x-11=4/9x+17 equation:



-8/15x-11=4/9x+17
We move all terms to the left:
-8/15x-11-(4/9x+17)=0
Domain of the equation: 15x!=0
x!=0/15
x!=0
x∈R
Domain of the equation: 9x+17)!=0
x∈R
We get rid of parentheses
-8/15x-4/9x-17-11=0
We calculate fractions
(-72x)/135x^2+(-60x)/135x^2-17-11=0
We add all the numbers together, and all the variables
(-72x)/135x^2+(-60x)/135x^2-28=0
We multiply all the terms by the denominator
(-72x)+(-60x)-28*135x^2=0
Wy multiply elements
-3780x^2+(-72x)+(-60x)=0
We get rid of parentheses
-3780x^2-72x-60x=0
We add all the numbers together, and all the variables
-3780x^2-132x=0
a = -3780; b = -132; c = 0;
Δ = b2-4ac
Δ = -1322-4·(-3780)·0
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17424}=132$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-132}{2*-3780}=\frac{0}{-7560} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+132}{2*-3780}=\frac{264}{-7560} =-11/315 $

See similar equations:

| -815x-11=49x+17 | | -6x+2=4x-17 | | 9y-2=3y+10 | | -5z-1+2z-3=2 | | 10x-5=5x+45 | | 3x^2-кх+3=0 | | b÷4=5 | | 5x+4-2x=-29 | | (4-2x)/3=3/4-5x/6 | | -x+6-2x-8x+18=13 | | -8x-3=-6x+10= | | -3+9y+13-5y=22 | | 5x=15,x=3 | | X+5=15,x=3 | | 5x=15,x=10 | | -3-5x+20+2x=5; | | (5x-9)=(2x-3x+4) | | 6a×6a-a-1=50 | | 4z+12-7z+7=1; | | (7y-3y)=0 | | -1+4m=10-3m | | (D³-3D²+4)y=0 | | X+5/4+3x=1/2 | | (2x+9)(4x-20)=0 | | X-2/7=x+4/5 | | x+13=5x-15 | | 3y-7=5(y+4) | | a/2-30/4=5+70/3 | | 2p-5=7p+7 | | 3,8−3x=−17,2−10x | | ​−9​​−1+2x​​=21 | | 3x-25=55 |

Equations solver categories